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FINAL TECHNICAL REPORT

AUGUST 1, 1987 - MAY 31, 1991

INERTIAL MANIFOLDS FOR NAVIER-STOKES EQUATIONS
AND RELATED DYNAMICAL SYSTEMS

Principal Investigators: Mitchell Luskin and George R. Sell

SUMMARY

The support from AFOSR/DARPA received over this four year period has enabled the
research team at the University of Minnesota to make substantial strides in their efforts
to better understand the long-time dynamics of the Navier-Stokes equations and related

dynamical systems. The accomplishments on this project, which are described below,
have had the effect of giving the University of Minnesota the reputation of being one of
the leading research centers in the world in the area of the dynamics of the Navier-Stokes

eqtilns. Two major scientific breakthroughs were recently made in the study of the
dynamics of the Navier-Stokes equations by scientists working on this project.

Research Highlights. (1) The first, which deals with the study of the dynamics of the
Navier-Stokes equations in 3D, was made recently by George R. Sell in collaboration with
Genevieve Raugel, (see Raugel and Sell (1989, 1990)). Specifically they have proved the
existence of a global, regular attractor for the weak solutions of the Navier-Stokes equations
on thin 3D domains. The existence of a global, regular attractor for a 3D problem, even
on a thin domain, is a surprising result. This is especially interesting because, in addition,

the dynamics on the attractor are far from trivial. This is the first time that anyone has
been able to prove the existence of a global, regula, attractor (with nontrivial dynamics)
for any Navier-Stokes problem in 3D.

(2) The second major breakthrough was in the area of the 2D Navier-Stokes equations.
It had been unknown whether the long-time dynamics of the 2D Navier-Stokes equation
could be completely described by the dynamics of a finite system of ODEs. By using a
very ingenious nonlenear change of variables, Dr. Minkyu Kwak, a recent Ph.D student of

George Sell, solved this problem. His approach was to use the nonlinear change of variables
to imbed the Navier-Stokes equaticns into a system of reaction diffusion equations. This
imbedding, which is now being called the Kwak Transformation by some experts, is chosen
so that it preserves all the dynamics of the Navier-Stokes equation. More importantly, the
system of reaction diffusion equations has only algebraic nonlinearities (i.e., no derivative
terms), and consequently, it has an inertial manifold. As a result, the dynamics of the
associated inertial form then completely describes the long-time dynamics of the original 2D
Navier-Stokes equations. The work of Kwak has already attracted wide spread interest. For
example, his paper was recently presented at an International Conference on Turbulence
Modeling at Arizona State University, and it was generally felt to be the most important
new result presented at this meeting.



The one-year no-cost extension for this project was very valuable, because it enabled
the researchers to begin a serious numerical investigation of the long-time dynamics of the
Kolmogorov flow. The results of this isvestigation are now being recorded on a video, and
a copy of this video will be sent to the AFOSR/DARPA Program Directors in the very
near future.

ACCOMPLISHMENTS

The major scienitific accomplishments on this project are the following:

* NEW DEVELOPMENTS IN NAVIER-STOKES DYNAMICS.

* GLOBAL REGULARITY FOR THE 3D NAVIER-STOKES EQUATIONS.

* INERTIAL FORMS FOR THE 2D NAVIER-STOKES EQUATIONS.

* NUMERICAL STUDY OF THE KOLMOGOROV FLOW.

* THEORY OF APPROXIMATION DYNAMICS

" PRINCIPLE OF SPATIAL AVERAGING AND INERTIAL MANIFOLDS.

" APPROXIMATION OF INERTIAL MANIFOLDS.

* EULER-GALERKIN METHOD.

* ELLIPTIC REGULARIZATION METHOD.

Global Regularity for the 3D Navier-Stokes Equations. One of the oldest out-
standing problems in the theory of the Navier-Stokes equations (for three-dimensional
flows) is that of the global regularity of the solutions of these equations. A related prob-
lem is the question of the existence of a global attractor for the solutions of these equations.
These problems, which go back to the pioneering work of Leray in the 1930s, are closely
connected to engineering and physical problems, such things as wind-shear in atmospheric
flows. They are considered by many persons to be two of the really difficult unsolved

problems in the area of fluid dynamics.

What was known on this problem (before this recent work) is that the solutions of the
Navier-Stokes equations are regular for a finite time interval. What one would like to know
is whether or not the solutions are regular for all time, i.e., one wants to understand the
global (in time) regularity of solutions. Some results on global regularity had been known
for small data (i.e., initial data and boundary data), but nothing was known about the
large data problem.

The break through made by the scientists on this project (George R. Sell in collabora-
tion with Genevieve Raugel) is to prove the global regularity of solutions with large data J

for the three dimensional Navier-Stokes equations on thin domains. (An example of such - ---
a thin domain is the region between two spheres of large radius. As a result this theory
applies to the study of atmospheric flows.) These results are reported on in References
numbered 10 and 12.

It ,l .,+ t r+ .c. exiensions of this work will have direct impact on the study
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of wind-shear phenomena. This is important for the design and control of all types of
aircraft, and for weather prediction.

Inertial Forms for the 2D Navier-Stokes Equations. The proof of the existence
of finite dimensional inertial forms by Dr. Minkyu Kwak for the 2D Navier-Stokes equations
was rather surprising. Most of the leading experts in the world in inertial manifold theory
had trid to do this, but with no success. In a related paper, Kwak showed that another
class of partial differential equations, a class which includes Burgers equation, has the finite
dimensional inertial form property.

Kolmogorov Flow. George Sell, together with his postdoctoral fellow, Yin Yan, set
out to compute the flow of 2D incompressible Navier-Stokes equations using a Cray-2. The
computational result is animated on the Silicon Graphics IRIS (SGI). The RLE files for the
animation are loaded to an Abekas and recorded to tape by Betacam. This computational
work was done by using the facilities of the Army High Performance Computing Reaseacr
Center at the University of Minnesota.

The theoretical study proves that there exists absorbing balls for the spatially dis-
cretized Navier-Stokes equations using finite difference schemes. The radii of this ball for
the discretized Sobolev norms are bounded from above by a constant independent of the
spatial mesh sizes, and it attracts ali trajectories at the exponential rate. The existence of
discrete global attractors is implied. Further study shows that the Hausdorff dimensions
of these discrete global attractors are also bounded from above by a constant independent
of the spatial mesh sizes, see References 19 and 20.

For accuracy, it is proved that for trajectories, with the finite difference discretization,
the error for a semi-discrete solution can be reduced to one order of the spatial mesh size,
with multiplication of a constant dependent of the time, plus a half order of the spatial
mesh size, due to the strong non-conforming property of the finite difference scheme. The
constant involved in the error estimate grows exponentially in time. This is expected in
practice: even in the case that there is no computational error at all, generally a small
perturbation of the initial condition can cause two trajectories to split apart at the expo-
nential rate. This is particularly true for turbulent cases. The exponential growth in time
involved in the error estimates is unavoidable. In practice, this kind of estimate is unap-
plicable. It is shown that in combining the dissipativity of semi-discrete and continuous
solutions, local error estimates imply global error estimates. Instead of considering local
objects (poii,ts, trajectories, etc.), one may consider global objects (sets, attractors, etc.).
The theory proves that under the azsuiniptirn of moderate smoothness of the solutions
and dissipativity (existence of global attractors) for both continuous and senil-discrete
systems, the time-dependent n-th order error estimates for trajectories imply the time-free
n-th order error ",) r- " 'or -="t- Tlis gives a definitive answer for
long-time flow simulation by supercomputers. Starting from an initial value, one computes
the flow at fine meshes for a long period of time. The accumulation of the error makes
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the distance between the discrete trajectory and the true trajectory bigger and bigger,

possibly at the exponential rate. The computational result does not show the behavior
of the original theoretical trajectory any more. But it still gives valuable information of
the system. It eventually reflects the dynamical behavior around the global attractor of a
dissipative system. If the initial data is close enough to the global attractor, one is assured
that the simulation gives the information of the global attractor from the very beginning.

A special case of the Navier-Stokes flow, the so-called Kolmogorov flow, is simulated.

The external force is the Kolmogorov force, where the first component is a sine function
of the second spatial variable, and the second component is zero. The Kolmogorov flow is
interesting for dynamical studies because it has an unstable stationary state. Two groups

of data are chosen for the viscosity constant and the force frequency. The first group
of parameters gives a bigger viscosity constant, lower frequency and milder force; the

second group gives smaller viscosity, higher frequency and stronger force. The simulation

starts from an initial state which is obtained by a small perturbation of the stationary

solution along its unstable direction. The dissipativity and the time-free error estimates

to a tolerance for the global attractors imply that the simulating flow is close to the global

attractor. For the first group of paranieers, the computation shows that the flow leaves the

stationary solution quickly and enters a chaotic region. The solution is very oscillatory in
the chaotic regioii. After a short while, the oscillatory components of the flow are damped
out and it approaches another stationary solution and wanders around for quite a while.

It finally leaves the stationary solution. The animations show an interesting evidence for

the time-delay property studied in Pliss and Sell (1990) and Sell and Yan, (1991). For

both groups of data, four animations of meshes 32 x 32, 64 x 64, 128 x 128 and 256 x 256
are synchronized to a big animation. As is heuristically predicted by the theory, for the

two groups of parameters, the degree of freedom is bounded by 1.44 x 105 and 2.30 x 106,

which suggests the meshes are coarser than 380 x 380 and 1520 x 1520 for two cases. The

computation shows that 128 x 128 and 256 x 256 already give fairly accurate results. The

theory is demonstrated by the simulation that beyond certain limits, finer meshes do not

give more details of the turbulence. It is worth pointing out that theoretical bounds for

prediction are generally not optimal. Even optimal bounds are for the worst case. This

is the reason for the fact that the flows can be simulated at meshes coarser than what

theories predict.

The giant 512 million-word Cray-2 memory and its great speed of computation are

big advantages for the large-scale flow simulation. Using the simple and efficient finite

difference scheme for spatial discretization and explicit method for time discretization, the

data files for the animations of vorticity, usually of hundreds of megabytes, are generated

from Cray-2 at the speed of 70 - 100 Mflops. Real valued data files are converted into
,terry .cd3 raster files by calling the "fitias' subroutine on Cray-2 at a great speed.

Raster files are passed to the local SGI workstations and are loaded to the SGIs memory
or raw disks to display the animations on SGIs.
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Using the Utah Raster Toolkit (URT), the animations, composited with scripts and
comments, are loaded to the Abekas-A60 digital image storage device, and then recorded
to the Betacam BVW-75 analog tape recorder. Static pictures of some frames of the
animations are taken by using the Solitaire Image Recorder.

The study for the computation of Navier-Stokes is being caxcied out on the Connection
Machine (CM 2). In addition to the finite difference discretization, spectral projection
methods are particularly considered, for the convenience of the existing multi-dimensional
FFT library routine in the Connection Machine Scientific Software Library.

Codes are massively parallelized and executed by using the newest CM slicewise mode
software and by attaching to CM's 8K, 16K or even 32K processors. With FORTRAN-C
interfacing, huge data files are output to the Data Vault parallelly with little cost. In
addition to the SGIs, Abekas, Betacam and Solitaire, the Framebuffer of CM-2 will be
used for more efficient graphics production.

As part of the joint project with Michael jolly and George Sell, our main purpose is to
apply the inertial manifold and approximate inertial manifold theory to solve the Navier-
Stokes equations, mainly by using the Connection Machine, together with the Cray-2 and
the Cray-XMP. Rather than solving a system of thousands or even millions of algebraic
equations obtained from discretizing the continuous Navier-Stokes equations, one expects
to solve much fewer equations to replicate the dynamics obtained by solving the Navier-
Stokes equations by using classical methods.

For the traditional discretization schemes of partial differential equations, one replaces
a partial differential equation by a system of ordinary differential equations. When the
mesh size is small, this system of ordinary equations is very large. In the current work,
systems of up to 200,000 ordinary equations are solved. Theoretically, solving the Navier-
Stokes equations is equivalent to solving a system of infinitely (countably) ordinary differ-
ential equations. The inertial and approximate inertial manifold theory shows that this
tedious work can be replaced by solving a relatively smaller system of ordinary differential
equations. The approximate inertial manifold theory will be applied to solve the Navier-
Stokes equations. This theory proves that despite the fact that it is still an open problem
for the existence of the inertial manifolds for Navier-Stokes equations, one can construct
approximate inertial manifolds to greatly reduce the amount of computation for the study
of the dynamical behavior of the Navier-Stokes equations Sell (1988).

Approximation Dynamics. In References Number 11, 13, and 18, we present a
new theory of approximation dynamics. In particular, we present a general theory of ap-
proximate inertial manifolds (AIM) for nonlinear dissipative dynamical systems on infinite
dimensional Hilbert spaces. The goal of this theory is to prove the Basic Theorem of Ap-
proximation Dy-,-ics, wherein we show that there is a fundamental connection between
the order of the approximating manifold and the amount of long-time dynamical infor-
mation which is preserved by the approximation. We also present a new general method
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(the Gamma Method) for the construction of an AIM. We show that this construction
applies to the Navier-Stokes equations on any buunded region in 2D (and on certain thin
3D regions) as well as to reaction diffusion equations in any space dimension. All these
equations have good AIMs which preserve the essential dynamics of the global attractor.

Principle of Spatial Averaging. The Principle of Spatial Averaging is described
in the paper by John Mallet-Paret and George R. Sell, Inertial manifolds for reaction
diffusion equations in higher space dimensions, see Reference Number 1 below. This is an
important contribution to the theory of inertial manifolds because it allows one to prove
the existence of inertial manifolds in certain situations (such as space dimension 3) where
the spectral gap condition is not satisfied. This paper contains some of the sharpest known
results on the theory of inertial manifolds.

Approximation of Inertial Manifolds. The major thrust of the research efforts on
the current DARPA project over the last two years has been in the area of the approxima-
tion of inertial manifolds. Seven of the thirteen research papers described below deal with
various aspects of this topic. (See Numbers 6-9, 11, 13, and 18.) One of the major goals
of our research is the attempt to discover new algorithms for the approximaticn of inertial
manifolds. Three such algorithms, the EULER-GALERKIN METHOD, the METHOD
OF ELLIPTIC REGULARIZATION, and the GAMMA METHOD are announced and
analyzed in these papers. The Gamma Method is an important feature of a new theory,
which we call Approximation Dynamics and which is described below.

RESEARCH PAPERS COMPLETED

1. John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion

equations in higher space dimensions, IMA Preprint No. 331, June, 1987, Journal American
Mathematical Society, vol 1, 1989, pp. 805-866.

Summary: In this paper we show that the scalar reaction diffusion equation

ut = vAu + f(x, u), u E R

with x C !Q,, C R" (n=2,3) and with Dirichiet, Neumann, or Periodic Boundary conditions,
has an inertial manifold when (1) the equation is dissipative, and (2) f is of class C3 and
for Q3 = (0, 27r) 3 or Q2 = (0, 2r/a 1 ) x (0, 2r/a 2 ), where a, and a 2 are positive. The proof

is based on an (abstract) Invariant Manifold Theorem for flows on a Hilbert space. It is
significant that on Q3 the spectrum of the Laplacian A does not have arbitrary large gaps,
as required in other theories of inertial manifolds. Our proof is based on a crucial property
of the Schroedinger operator A + v(x), which is valid only in space dimension n < 3. This
property says that A + v(x) can be well approximated by the constant coefficient problem
A + f3 over large segments of thc Hilbert space L2( Q), where V = (vol Q)-1 fn vdx is the
average value of v. We call this property the Principle of Spatial Averaging. The proof
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that the Schroedinger operator satisfies the Principle of Spatial Averaging on the regions

Q 2 and Q3 described above follows from a Gap Theorem for Finite Families of Quadratic
Forms, which we present in an Appendix to this paper.

2. Kenneth R. Meyer and George R. Sell, Melnikov transforms, Bernoulli bundles and

almost periodic perturbations, IMA Preprint 358, Transactions of the American Mathe-
matical Society, vol 314, 1989, pp. 63-105.

Summary: In this paper we study nonlinear time-varying perturbations of an au-
tonomous vector field in the plane R 2 . We assume that the unperturbed equation, i.e. the
given vector field has a homoclinic orbit and we present a generalization of the Melnikov

method which allows us to show that the perturbed equation has a transversal homoclinic
trajectory. The key to our generalization is the concept of the Melnikov transform, which
is a linear transformation on the space of perturbation functions. The appropriate dynam-

ical setting for studying these perturbation is the concept of a skew product flow. The

concept of transversality we require is best understood in this context. Under conditions
whereby the perturbed equation admits a transversal homoclinic trajectory, we also study

the dynamics of the perturbed vector field in the vicinity of this trajectory in the skew
product flow. We show the dynamics near this trajectory can have the exotic behavior

of the Bernoulli shift. The exact description of this dynamical phenomenon is in terms

of a flow on a fiber bundle, which we call, the Bernoulli bundle. We allow all pertur-
bations which are bounded and uniformly continuous in time. Thus our theory includes

the classical periodic perturbations studied by Melnikov, quasi periodic and almost pe-

riodic perturbations, as well as toroidal perturbations which are close to quasi periodic
perturbations.

3. Ciprian Foias, Basil Nicolaenko, George R. Sell, and Roger T6mam, Inertial mani-
folds for the Kuramoto-Sivashinsky equation and the lowest estimate fur their dimensions,

J. Math. Pures Appl., vol 67, 1988, pp. 197-226.

Summary: In this paper we show that the Kuramoto-Sivashinsky (KS) equation in one

space dimension has inertial manifolds for every value of the cell size L. One objective is
to carefully estimate the lowest dimension of the inertial manifold 9N1. We show that there
is a constant C1, which does not depend on L, such that dim 9R < (1 + C1 L7 /2 ). This can

be compared with known estimates of the Hausdorff dimension dH of the global attractor
A for the KS equation, which is given by dH _ C2L31 2 , for some constant C2 .

4. Mario Taboada, Finite dimensional asymptotic behavior for the Swift-Hohenbcrg

model of convection, Nonlinear Analysis, TMA.

Summary: We study the asymptotic behavior of the equation

ut + u.... + u., + au + uu, = 0
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for x E I = [-L/2, L/2] with boundary condition

u=uX=0 on 91.

This equation was introduced by Swift and Hohenberg as a model for convection. We
prove that all solutions enter and are confined within a fixed ball in L 2 (I) and, by applying

methods developed by Foias, Sell and Tmam, we show that the equation has an inertial
manifold. This confirms the conjecture of Chat6 and Manneville about the low-dimensional

behavior of the system.

5. George R. Sell, Hausdorff and Lyapunov dimensions for gradient systems, IMA
Preprint No. 399, Contemporary Math., vol 99, 1989, pp. 85-92.

Summary: We consider a generic class of gradient systems on a suitable bounded
region Q C R m , where m = 1, 2,.... Let dH and dL denote, respectively, the Hausdorff and

Lyapunov dimensions of the global attractor of the gradient system. Our objective in this
paper is to derive an asymptotic formula which implies that

d--- (2+1)m/2 as dH -+ 00.dH

6. Ciprian Foias, George R. Sell, and Edriss S. Titi, Exponential tracking and approxi-

mation of inertial manifolds for dissipative nonlinear systems, J. Dynamics and Differential

Equations, vol 1, 1989, pp. 199-244.

Summary: In this paper we study the long time behavior of solutions for a class of

nonlinear dissipative partial differential equations. By means of the Lyapunov-Perron

method we show that these equations have an inertial manifold, provided that a certain
gap condition in the spectrum of the linear part is satisfied. We verify that the constructed

inertial manifold has the property of exponential tracking (i.e., stability with asymptotic

phase, or asymptotic completeness), which makes it a faithful representative to the relevant

dynamics of the equation. This theory of inertial manifolds allows us to introduce a

modified Galerkin approximation for analyzing the original PDE. In an illustrative example
(which we b0elieve to be typical), we show that this modified Galerkin approximation yields

a smaller error that the standard Galerkin approximation.

7. Ciprian Foias, Michael S. Jolly, I. G. Kevrekidis, George R. Sell, and Edriss S. Titi,

On the computation of inertial manifolds, Physics Letters A, vol 131, 1988, pp. 433-436.

Summary: A modified Galerkin (the Euler-Galerkin) algorithm for the computa-
tion of inertial manifolds is described and applied to a reaction diffusion equation and

the Kuramoto-Sivashinsky (KS) equation. In the context of the KS equation, a low-

dimensional Euler-Galerkin approximation (n = 3) is distinctly superior to the traditional
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Galerkin of the same dimension, and comparable to a traditional Galerkin of a much higher
dimension (n = 16).

8. Mitchell Luskin and George R. Sell, Approximation theories for inertial manifolds,
Proceedings of the Luminy Conferenct on Infinite Dimensional Dynamical Systems, Math.

Modelling and Numerical Anal.

Summary: During the last few years it has been shown that some infinite dimensional
nonlinear dissipative evolutionary equations have inertial manifolds. This discovery has
profound significance in the study of the long-time behavior of the solutions of these
equations for the following reasons:

" The inertial manifold 91 is a positively invariant finite dimensional manifold in
the ambient infinite dimensional phase space, and the given evolutioaary equations
reduces to a finite dimensional ordinary differential equation, an ODE, on !M1.

" Every attractor, including the global attractor, lies in 9N1.

" Every solution of the nonlinear evolutionary equation is tracked at a exponential
rate by a solution on 9R1. This means that there is an 77 > 0 such that for every
solution u(t) of the original evolutionary system, there is a solution v(t) on 9)1 such
that

(0) Ilu(t) - v(t)l < Ke - t , t > 0,

where K depends on u(O).

Because the existence of an inertial manifold implies that the dynanics of the original
evolutionary equation is completely described by a finite dimensional ODE, with no error,
this should lead to substantial improvements in the computational efficiency of numerical

methods used to study the evolutionary equation. In order to realize this efficiency, it is
important to find good algorithms for approximating the inertial manifolds. The main

objective in this paper is to examine several approximation theories for inertial manifolds.
Since every existence theory is a potential spawning ground for an approximation theory,
we begin with a brief review of the three known classes of existence theories for inertial

manifolds.

The first existence theory uses the Lyapunov-Perron method, which is based on the
variation of constants formula. While the Lyapunov-Perron method is very useful for
deriving properties of inertial manifolds (in addition to proving existence), it is not a very
promising arena for finding a good approximation theory. The main fault of the Lyapunov-
Perron method is that it uses backward integration of the evolutionary equation. Since the

backward integration is in the "unstable" direction of the evolutionary equation, one will
encounter a blow-up of the solutions, which in turn is an inherent source of computational
inefficiency.



The second class of existence theories use the Hadainard method, Or the graph trans-

form method. The basic idea here is to start wth some initi. I .pproximation to the inertial

manifold. This initial approximati. ) is an easily computed manifold of the correct dimen-
sion, call it 9Y0. One then lets the dynamics of the given evolutionary equation act on

9T10, thereby obtaining a set 9 ilt at each time t > 0. One then proves, under suitable
hypotheses of course, that each 931t is representable as the graph of some function, that
the limit limt. Jlt = 9R1 exists, and that 9R1 is the inertial manifold.

Approximation theories based on the Hadarnard method will be better than theories
based on the Lyapunov-Perron method because one is integrating forward in time, i.e., in
the stable direction. Because of inequality (0) one expects that 9X1,. 9), for an appro-

priate r > 0. Approximation theories based on the Hadamard method try to approximate
1) ,. Such approximations can be easily implemented when r is small, or when the con-

stant 71 in (0) is large. The Euler-Galer!lin method, which is introduced in Foias, Sell and
Titi (188) and described in Section 3 below, is an illustration of a Hadamard-type approx
imation. If the convergence of 93Rt tc M is slow, then the Hadamard-type approximation
theories will require the time parameter r to be large in order to get good approxima-
tions. We expect that in these situations, one will get better approximations by using the

following alternative.

The third method for proving the existence of inertial manifolds is based on the method
of elliptic regularization which Sacker (1964, 1965, 1969) used in the study of finite dimen-
sional invariant manifolds. The extension of the Sacker method to infinite dimensional
dynamical systems is presented in Fabes, Luskin and Sell (1988), and Luskin and Sell

(1988).

9. Eugene Fabes, Mitchell Luskin and George R. Sell, Construction of inertial man-

ifolds by elliptic regularization, IMA Preprint No. 459, J. Differential Equations, vol 89,
1991. pp. 355-387.

Summary: In many cases an inertial manifold 931 for an imfinite dimensional dissipative
dynamical system can be represented as the graph of a smooth function -(t from a finite
dimensional Hilbert space H P to another Hilbert space H q . The invariance property of 9R1
means that 4i can be written as the solution of a first order partial differential equation

VP(p)G(p, P(p)) + AI(p) = G:.(p. b(p))

over IP, where G1 and G2 are nonlinear functions which depend on the original dynamical
system and A is a suitabl, "stable" linear operator. In this paper we use a method

introduced by Sacker (1965), for the study of finite dimensional dynamical systems, to find
inertial manifolds in the infinite dimensional setting. This method involves replacing the
first order equation for D by the regularized elliptic equation

-eAD + VD(p)G1 (p, I(p)) + A4P(p) = G2 (p, D(p)),
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with suitable boundary conditions. It is shown that if A satisfies a spectral gap condition,
then the solutions -Ib, of the elliptic equation converge as E - 0+.

10. Gcnevieve Raugel and George R. Sell, Equations de Navier-Stokes dans des do-
mains minces en dimension trois: r~gularite globale, Comptes Rendu Paris, vol 309, 1989,
pp. 299-303.

Summary: D,'n'i cette note, nous prdsentor.s un rdsultat d'existence et de r6gularit6
globales de solutioi s les 6quations de Navier-Stokes avec conditions limites priodiques
dans un domaine mince, en dimension trois. En outre nous comparons l'attracteur de
ces 6quations avec l'attracteur global d'un syst6me reduit d'6quations de Navier-Stokes en
dimension deux.

11. G-orge R. Sell, Approximation dynamics: Hyperbolic sets and inertial maniolds,
Minnesota Supercomputer Institute Preprint No. 89/39, March 1989.

Summary: There are three objectives in this paper. First we present a general theory
of approximate inertial manifolds (AIM) for nonlinear dissipative dynamical systems on
infinite dimensional Hilbert spaces. The goal of this theory is to prove the Basic Theorem
of Approximation Dynamics, wherein we show that there is a fundamental connection
between the order of the approximating manifold and the amount of long-time dynamical
information which is preserved by the approximation. The second objective is to present a
new general metho I for the construction of AIM. Thirdly ve show that this construction
applies to the Navier-Stokes equations on any bounded region in 2D (and on certain thin
3D regions) as well as to reaction diffusion equations in any space dimeision. All these
equations h-ve good AIMs which preserve the essential dynamics of the global attractor.

12. Genevieve Raubel and George R. Sell, Navier-Stokes equations on thin three di-
mcns onal domains: Global regularity of solutions I, IMA Preprint No. 662, May 1990,
submitted for publication.

Summary: We examine the Navier-Stokes equations (NS) on a thin 3D domain , =

Q2 x (0, e), where Q2 is a suitable bounded domain in R2 and e is a small, positive, real
parameter. We consider these equations with various homogeneous boundary conditions,
especially spatial!y periodic boundary conditions. We show that there are large sets R(E)
in H'(S2) and b(e), in WI'((0,oo),L 2(Q,)) such that if Uo, E R(e) and F E b(e), then
(NS) has a strong solution U(t) that remains H'(Q,) for all t > 0 and in H 2 (f2,) for
all t > 0. We show that the set of strong solutions of (NS) has a local attractor Z. in
H'(Q,), which is compact in H 2 (QE). This local attractor 21, is the global attractor for all
the weak solutions (in the sense of Leray) of (NS). We also show that, under reasonable
assumptions,2t, , is upper semicontinuou- at f = 0.

13. Victor A. Pliss and George R. Sell, Perturbation of attractors of differential equa-
tions, J. Differential Equations, vol 92, 1991, pp. 100-124.
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Summary: In this paper we study small C'-perturbations of a differential equation
that has a hyperbolic attractor X. We show that if 9 has a suitable Lipschitz property

and if the perturbation is small enough, then there is a homeomorphism h : X -* XY,

where 9Y is a hyperbolic attractor for the perturbed equation. Examples are included.

14. George R. Sell and Mario Taboada, Attractors for the Kuramoto-Sivashinsky equa-
tion in two dimensions, J. Nonlinear Analysis, TMA, 1991, to appear.

15. George R. Sell and Yuncheng You, Inertial manifolds: The non-self adjoint case,

J. Differential Equations, to appear.

Summary: In contrast with the existing theories of inertial manifolds, which are based

on the self-adjoint assumption of the principal differential operator, in this paper we show
that for general dissipative evolutionary systems described by semi-linear parabolic equa-
tions with principal differential operator being sectorial and having compact resolvent,

there exists an inertial manifold provided that certain gap conditions hold. We also show
that by using an elliptic regularization, this theory can be extended to a class of KdV

equations, where the prinzipal differential operator is not sectorial.

16. Robert J. Sacker and George R. Sell, Dichotomies in linear evolutionary equations
in Banach spaces IMA Preprint No. 838, August, 1991, submitted for publication.

Summary: In this paper we present a characterization for the cxistence of an exponen-

tial dichotomy for a linear evolutionary system on a Banach space. The theory we present
here applies to general time varying linear equations in Banach spaces. As a result it gives

a description of the behavior of the nonlinear dynamics generated by certain nonlinear
evolutionary equations in the vicinity of a compact invariant set. In the case of dissipative

systems, our theory applies to the study of the flow in the vicinity of the global attrac-

tor. The theory formulated here holds for linear evolutionary systems which are uniformly

a-contracting and applies to the study of the linearization of nonlinear equations of the fol-

lowing type: (a) parabolic PDEs, including systems of reaction diffusion equations and the

Navier-Stokes equations, (b) hyperbolic PDEs, including the nonlinear wave equation and
the nonlinear Schr6dinger equation with dissipation, (c) retarded differential equations,

and (d) certain neutral differential delay equations.

17. Shui-Nee Chow, Kening Lu, and George R. Sell, Smoothness of inertial manifolds,
IMA Preprint, 1990.

18. George R. Sell, An oplimality condition for approzimate inertial manifolds Dy-
narnical TheoriCs cf Turbulence, IMA Proceedings, to appear.

Summary: There are three objectives in this paper. First we present a general theory
of approximate inertial manifolds (AIMs) for nonlinear dissipative dynamical systems on

infinite dimensional Hilbert spaces. The goal of this theory is to prove the Basic Theorem
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of Approximation Dynamics, wherein we show that there is a fundamental connection
between the order of thc appioximating manifold and the amount of long-time dynamical
information which is preserved by the approximation. The second objective is to present a
new general method for the construction of an AIM. Thirdly we show that this construction
applies to the Navier-Stokes equations on any bounded region in 2D (and on certain thin
3D regions) as well as to reaction diffusion equations in any space dimension. All these
equations have good AIMs which preserve the essential dynamics of the global attractor.

19. Yin Yan, Dimensions of attractors for discretizations for Navier-Stokes Equations,
AHPCRC Preprint 91-01, J. Dynamics and Differential Equations, to appear.

Summary: In this paper, we discretize the 2D Navier-Stokes equations with periodic
boundary conditions by the finite difference method. We prove that with a shift for dis-
cretization the global solutions exist. After proving some discrete interpolated Sobolev
inequalities in the sense of finite differences, we prove the existence of the global attrac-
tors of our discretized model, and we estimate the upper bounds for the Hausdorff and
the fractal dimensions of the attractors, which are independent of the mesh size. These
bounds are considerably close to those of continuous version.

20. Yin Yan, Attractors and error estimates for discretizations of incompressible
Navier-Stokes Equation, AHPCRC Preprint, submitted for publication.

Summary: By imbedding sets of nodal values to funiction spaces, wc apply variational
arguments to finite difference approximations to the 2D incompressible Navier-Stokes equa-
tions. In addition to proving error estimates for trajectories, we prove time-free error es-
timates to a tolerance for attractors. An argument of applying our techniques to finite
element approximations is also given.

21. Minkyu Kwak, Finite dimensional description of convective reaction-diffusion
equations, AHPCRC Preprint 91-29, J. Dynamics and Differential Equations, to appear.

Summary: We are concerned with the asymptotic dynamics of a certain type of semi-
linear parabolic equation namely, ut = uxx + (f(u))x + g(h) + h(x) on the interval [0, L].
Jnder the general condition we prove that this equation admits a dissipative dynamical
system and it possesses the global attractor. But for large L > 0, we do not know whether
there exists an inertial manifold or not. Here we introduce a nonlinear change of variables
so that we transform the above equation to reaction diffusion system which possess the
exactly same asymptotic dynamics. We then prove the existence of inertial manifold for
the transformed equation, thereby we find the ordinary differential equation which describe
completely the long-time dynamics of the original equation.

22. Minkyu Kwak, Finite dimensional inertal forms for the 2D Navier-Stokes equa-
tions, AHPCRC Preprint 91-30, submitted for publication.

13



Summary: In this paper we explain how the long time dynamics of 2D Navier-Stokes
(N-S) equations with periodic boundary conditions on a suitable bounded region 1/2 in
R 2 can be described completely by a finite dimensional system of ordinary differential
equations. Our approach is to imbed the 2D N-S equations into a reaction diffusion system
which possesses the exactly same asymptotic dynamics. We then prove the existence of
inertial manifold for the transformed equations and we interpret the dynamics of N-S
equations via the inertial form of the transformed equations.

23. Mitchell Luskin and George R. Sell, The construction of inertial manifolds for
reaction diffusion equations by elliptic regularization, IMA Preprint.

Summary: We demonstrate that the method of elliptic regularization developed in
Fabes, Luskin, and Sell (1991) can be used to construct invariant manifolds for reaction
diffusion equations.

24. Mitchell Luskin and George R. Sell, Parabolic regularization and inertial manifolds,
in preparation.

Preliminary Summary: In many cases an inertial manifold 9N1 for an infinite dimen-
sional nonlinear evolutionary equation

p' = Gi (p, q), q' + Aq = G2(p, q)

can be represented as the graph of a function 4 : H P - H q , where H P is a finite dimen-
sional space and H q is infinite dimensional. One method for proving the existence of 4' is
the Lyapunov-Perron method, wherein (D is a fixed point of the integral operator

T7"(po) = JeAsG2 (p(s),4'(p(s))ds,

and p(t) is the solution of p' = Gi(p, 4 '(p)) satisfying p(O) = P0. A second method for
proving the existence of 4D is the Sacker method of elliptic regularization where 4' is realized
as the weak limit (as E --+ 0+ ) of solutions 4'D of the nonlinear elliptic equation

-FAiD + D4'GI (p, 4') = G2 (p, ') - A4,

with suitable boundary conditions. In this paper we present a theory which combines these
two approaches. As a result, we can show that the weak limit of k,, is a smooth C'-function
and 'hat the error term satisfies I1'-'-joo < Lie'/ 2 for some constant L,. Moreover, we
show that ', converges to -' in the uniform C1 topology on HP. We also derive two results
which describe the exponential attraction properties of the inertial manifold 9X = Graph 4'
and the approximate inertial manifolds 9Re = Graph 4,e, for e > 0.
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INVITED LECTURES

George R. Sell

1. Howard Conference on Semigroups, PDEs and Attractors. August, 1987. Melnikov

Transform and Bernoulli Bundles for Almost Periodic Perturbations.

2. Equadiff 87 Conference, Xanthi, Greece. August, 1987. Inertial Manifolds: Exis-

tence and Approximation Theories.

3. Mathematics Institute, University of Heidelberg. September, 1987. Inertial Mani-

folds for Gradient Systems.

4. Czechoslovak Summer School on Dynamics and Differential Equations. September,

1987. The Principle of Spatial Averaging and Inertial Manifolds.

5. Luminy Conference on Infinite Dimensional Dynamical Systems, Marsielles, France.

September, 1987. Inertial Manifolds: Existence and Approximation Theories.

6. Applied Mathematics Seminar, Ecole Polytechnique, Palaiseau, France. September,
1987. Poincar6-Bendixson Theory for Differential Delay Equations.

7. Applied and Computational Mathematics Program (DARPA) Conference, Wash-

ington, DC. October, 1987. Inertial Manifolds: Existence and Approximation Theories.

8. Earth Sciences Center Seminar, Penn State University. December, 1987. Homoclinic

Orbits: A Source of Chaos.

9. Dynamics Days, University of Houston. January, 1988. Inertial Manifolds: Approx-

imation Theories.

10. Special Session on Nonlinear Differential-Delay Equations, AMS Annual Meeting,

Atlanta. January, 1988. Exponential Dichotomies for Linear Differential Equations in

Banach Spaces.

11. Twin Cities Urban Math Collaborative. January, 1988. The Mad Dogs of Calais.

12. Summer School on Differential Equations and Dynamical Systems (A conference

in honor of Jack Hale's 60 th birthday), Campinas, Brazil, February, 1988. Approximation

Theories for Inertial Manifolds.

13. Conference on Differential Equations and Population Dynamics, Memorial Confer-

ence for Geoffrey Butler, University of Alberta, Edmonton, Canada, June, 1988. Approxi-

mation Theories for Inertial Manifolds.

14. IMA Program on Signal Processing, July, 1988. Introduction to Inertial Manifolds.

15. Colloquium Lecture, Courant Math. Inst., New York, October, 1988. Elliptic

Regularization and Inertial Manifolds.

16. PDE Seminar Lecture, University of Minnesota, October, 1988. Global Regularity

of Solutions of the 3D Navier Stokes Equations.

17. Chemical Engineering and Material Scicnce Department Colloquium, University

of Minnesota, November, 1988. Inertial Manifolds for Chemical Reaction Dynamics.
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18. Seminar Lecture, Indiana University, November, 1988. Global Regularity of Solu-
tions of the 3D Navier Stokes Equations.

19. AMS Special Session on Differential Equations, Claremont, California, November,
1988. Melnikov Transforms and Bernoulli Bundles for Almost Periodic Perturbations.

20. Conference on Differential Equations, University of Southern California, November,
1988. Inertial Manifolds and a Theorem of Sacker.

21. Seminar Lecture, Institute for Advanw. Study, Princeton, December, 1988. The
Principle of Spatial Averaging and Inertial Manifolds.

22. Seminar Lecture, Institute for Advanced Study, Princeton, December, 1988. Global
Regularity of Solutions of the 3D Navier Stokes Equations.

23. Seminar Lecture, Universit6 de Paris-Sud, Orsay, France, December, 1988. Mel-
nikov Transforms and Bernoulli Bundles for Almost Periodic Perturbations.

24. Colloquium Lecture, Department of Applied Mathematics, Ecole Polytechnique,
Palaiseau, France, December, 1988. Elliptic Regularization and Inertial Manifolds.

25. MAA Invited Address, Annual AMS-MAA Meetings, Phoenix, January, 1989.
Inertial Manifolds.

26. Los Alamos, Center for Nonlinear Phenonmena, February, 1989. Approximation
Dynamics for Dissipative Systems.

27. Colloquium Lecture, University of New Mexico, February, 1989. Approximation
Dynamics for Dissipative Systems.

28. Seminar Lecture, University of New Mexico, February, 1989. Elliptic Regularization
and Inertial Manifolds.

29. Control Theory Sciences Colloquium Lecture, University of Minnesota, February,
1989. Approximation Dynamics for Dissipative Systems.

30. Mathematics Colloquium Lecture, Cornell University, March, 1989. Approximation
Dynamics for the Navier-Stokes Equations.

31. Mathematics Colloquium Lecture, Georgia Institute of Technology, April, 1989.
Approximation Dynamics for the Navier-Stokes Equations.

32. Seminar Lecture, Georgia Institute of Technology, May, 1989. Elliptic Regulariza-
tion and Inertial Manifolds.

33. Mathematics Colloquium Lecture, University of Arizona, May, 1989. Approxima-
tion Dynamics for the Navier-Stokes Equations.

34. Seminar Lecture, Moscow State University, June 1989. Approximation Dynamics
for the Navier-Stokes equations and Related Dynamical Systems.

35. Seminar Lecture, Moscow State University, June 1989. Global Regularity of Solu-
tions of the Navier-Stokes Equations on Thin Three Dimensional Domains.

36. Seminar Lecture, Steklov Mathematics Institute, Moscow, June 1989. The Prin-
ciple of Spatial Averaging and Inertial Manifolds.
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37. Seminar Lecture, Steklov Mathematics Institute, Leningrad, June 1989. Global

Regularity of Solutions of the Navier-Stokes Equations on Thin Three Dimensional Do-
mains.

38. Seminar Lecture, Leningrad State University, June 1989. Approximation Dynam-
ics: Hyperbolic Sets and the Pliss Reduction Principle.

39. Invited Lecture, DARPA Summer School Conference on Mathematical Models and

Manufacturing Science, July 1989. Inertial Manifolds for Problems in Chemical Engineer-
ing.

40. Invited Address, U.S. - Japan Conference on Dynamical Systems. July 1989.
Global Regularity of Solutions of the Navier-Stokes Equations on Thin Three Dimensional
Domains.

41. Seminar Lecture, University of Tokyo, July 1989. Approximation Dynamics for
the Navier-Stokes equations and Related Dynamical Systems.

42. Colloquium Lecture, Institute for Mathematics and its Applications, October,
1989. Introduction to Inertial Manifolds.

43. Invited Lecture, Conference on Differential Equations, Conference in Honor of
Kenneth Cooke's 6 5 th Birthday, Claremont University, February, 1990. Global Regularity

of Solutions of the Navier-Stokes Equations on Thin Three Dimensional Domains.

44. Invited Lecture, AMS-SIAM Minisymposium on Low Dimensional Structures in
Dynamics, Albuquerque, March, 1990. Approximation Dynamics for the Navier-Stokes
equations and Related Dynamical Systems.

45. Invited Lecture, Southeastern Conference on Differential Equations, Birmingham,

Alabama, March, 1990. Approximation Dynamics for the Navier-Stokes equations and

Related Dynamical Systems.

46. Invited Lecture, SIAM Conference on Dynamical Systems, Orlando, April, 1990.
Global Regularity of Solutions of the Navier-Stokes Equations on Thin Three Dimensional
Domains.

47. Colloquium Lecture, Mathematics Department, University of Wisconsin, Milwau-

kee, April, 1990. Approximation Dynamics for the Navier-Stokes equations and Related

Dynamical Systems.

48. Invited Lecture, Conference on Dynamical Systems Theories of Turbulence, In-
stitute for Mathematics and its Applications, May, 1990. An optimality condition for
approximate inertial manifolds.

49. Colloquium Lecture, Mathematics Institute, Ludwig Maximillian University, Mu-

nich, Germany, July, 1990. Global Attractors for the Navier-Stokes Equations on Thin
Three Dimensional Domains.

50. Invited Lecture Series, Summer Institute on Infinite Dimensional Dynamical Sys-
tems, Blaubauren, Germany, July, 1990. Approximation Methods for Infinite Dimensional
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Dynamical Systems.

51. Colloquium Lecture, Weierstrass Mathematics Institute, East German Academy

of Sciences, Berlin, July, 1990. Global Attractors for the Navier-Stokes Equations on Thin

Three Dimensional Domains.

52. Invited Lecture, International Conference on Functional Differential Equations,

Kyoto, August, 1990. Global Attractors for the Navier-Stokes Equations on Thin Three

Dimensional Domains.

53. Invited Lecture, Conference on Differential Equations, Conference in Honor of

Henry Antosiewicz'z 6 5 1h Birthday, University of Southern California, Los Angeles, Septem-

ber, 1990. Pe-turbations of Attractors of Differential Equations

54. Colloquium Lecture, Mathematics Department, Memphis State University, Mem-

phis, October, 1990. Approximation Dynamics for the Navier-Stokes equations and Related

Dynamical Systems.

55. Colloquium Lecture, Leningrad State University, Leningrad, October, 1990. Ap-

proximation Dynamics for the Navier-Stokes equations and Related Dynamical Systems.

56. Colloquium Lecture, Mathematics Department, Virginia Polytecnical Institute,

Blacksburg, November, 1990. Approximation Dynamics for the Navier-Stokes equations

and Related Dynamical Systems.

57. Seminar Lecture, Mathematics Department, Universita di Roma, II, March, 1991.

Global Attractors for the Navier-Stokes Equations on Thin Three Dimensional Domains.

58. Invited Lecture, Oberwolfach Conference on Invariant Manifolds for Differential

Equations, March, 1991. New Developments in Navier-Stokes Dynamics.

59. Colloquium Lecture, Mathematics Department, Marquette University, April, 1991.

Global Attractors for the Navier-Stokes Equations on Thin Three Dimensional Domains.

60. Invited Lecture, International Conference on Turbulence, Arizona State University,

Tempe, May, 1991. Global Attractors for the Navier-Stokes Equations on Thin Three

Dimensional Domains.

61. Colloquium Lecture, Mathematics Department, Michigan State University, May,

1991. Global Attractors for the Navier-Stokes Equations on Thin Three Dimensional Do-

mains.

Mitchell Luskin

1. Heriot-Watt University, Edinburgh, Scotland. August, 1987. Minimum Energy

Configurations for Liquid Crystals: Computational Methods and Results.

2. Oberwolfach Mathematics Institute, West Germany. August, 1987. Minimum

Energy Configurations for Liquid Crystals: Computational Methods and Results.

3. University of Chicago, Conference on Advances in Computational Modeling and

Numerical Analysis, September, 1987. Numerical Results for Liquid Crystals.
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4. University of Wyoming, Mathematics Colloquium. October, 1987. Defects and

Transitions in Liquid Crystals.

5. Carnegie-Mellon University and University of Pittsburgh, Applied Mathematics

Colloquium. November, 1987. Defects and Transitions in Liquid Crystals.

6. University of Pavia, Italy. January, 1988. Defects and Transitions in Liquid Crys-

tals.

7. University of Nice, Conference on Partial Differential Equations and Continuum

Models of Phase Transitions, January, 1988. Defects and Transitions in Liquid Crystals.

8. Caltech, Applied Mathematics Colloquium, February, 1988. Defects and Transitions
in Liquid Crystals.

9. UCLA, Applied Mathematics Colloquium, February, 1988. Defects and Transitions

in Liquid Crystals.

10. Conference on Group Theoretic and Analytic Methods in Continuum Mechan-

ics, Cornell University, June, 1988. Computational results for phase transitions in shape-
memory materials.

11. Caltech Seminar, July 1988. Computational results for shape memory materials

12. Virginia Polytechnic Institute, Workshop on Smart Materials, Structures, and

Mathematical Issues, September, 1988. Computational results for phase transitions in

shape memory materials.

13. Indiana University, Institute for Applied Mathematics and Scientific Computing,

Seminar Lecture, September, 1988. Construction of invariant manifolds by elliptic regu-

larization.

14. Technion - Israel Institute of Technology, March, 1989. Numerical results for some

phase transitions in crystals.

15. Tel Aviv University, Seminar in Applied Mathematics, March, 1989. Numerical

results for some phase transitions in crystals.

16. Weizmann Institute of Science, March, 1989. Numerical results for some phase

transitions in crystals.

17. Minisymposium lecture, Annual SIAM Meeting, San Diego, July, 1989. The com-

putation of microstructure for crystals.

18. UCLA, October, 1989.

19. Instito Applico Calculo, Rome, Italy, December, 1989.

20. Trento, Italy, Meeting on "Calculus of variations, elasiticity, and crystals," Decem-

ber, 1989.

21. Oberwolfach, West Germany, Meeting on "Theory and numerical methods for

initial-value problems," December, 1989.

22. University of California, Irvine, January, 1990.

23. US-Japan Workshop on Smart Materials, Honolulu, March, 1990.
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24. University of Paris XI, NATO Workshop on "Defects, Singularities, and Patters in
Nematic Liquid Crystals," June, 1990.

25. Ecole Polytechnique, Palaiseau, France, June, 1990.

26. University of Metz, France, Metz Days Meeting, June, 1990.

27. Princeton University, Applied Math Seminar, November, 1990.

28. New Jersey Institute of Technology, November, 1990.

29. Mathematical Sciences Research Institute, Berkeley, California, January, 1991.

30. Americal Mathematical Society Annual Meeting, Special Session, January, 1991.

31. Laval University, Quebec, January, 1991.

32. American Association for the Advancement of Science Annual Meeting, February,
1991.

33. Kent State University, March, 1991.

34. Carnegie Mellon University, March, 1991.

35. IMA, Minneapolis, March, 1991.

ACTIVITIES OF GRADUATE STUDENTS

Michael S. Jolly completed his PhD thesis with a dissertation on "Explicit construction
of an inertial manifold for a reaction diffusion equation" in September, 1987. Sell was his

Lhesis advisor. Jolly has been a frequent visitor on this project helping with the efforts on
approximating inertial manifolds.

Mario Taboada completed his PhD thesis under the direction of Sell in July 1989.
The main objective of his research is to extend the dynamical theory of the Kuramoto-
Sivashinsky equation to 2-space dimensions. He has now succeeded in showing that for
thin domains the 2D problem has an attractor with a large basin of attraction.

Yin Yan did his thesis research under the direction of George Sell, and he recieved his

PhD degree in June, 1990. During the period from June, 1990 to May, 1991, Yan served as
a postdoctoral fellow on this project and he assisted in the simulation of the Kolmogorov

flow. His PhD thesis project was to study the attractors for discretizations of a number of
nonlinear partial differential equations, including the nonlinear Schr6dinger equation with

weak damping, the sine Gordon equation with weak damping and the 2D Navier-Stokes
equations. He derived estimates of the Hausdorff dimension of the global attractor as
a function of the physical parameters for these systems. The hope is to show that the

estimates for the discretized system is the same as that for the continuous systems. See

References numbered 19 and 20.

Ling Ma did research under the joint direction of Luskin and Sell. Ma is working to

prove rates of convergence for several iterative methods for the approximation of inertial

manifolds which are suggested by the analysis in the paper Construction of inertial man-
ifolds by elliptic regularization by Fabes, Luskin, and Sell. These rates of convergence will

20



then be used to compare the efficiency and to optimize the rate of convergence for the it-

erative methods. Numerical experiments will be utilized to suggest research directions for

the analysis. Ma finished his PhD thesis on a related topic under the direction of Luskin

in June, 1991.

Minkyu Kwak did his PhD thesis on the dynamics of the 2D Navier-Stokes equations.

His thesis represents a major breakthrough. It had been unknown whether the long-time

dynamics of the 2D Navier-Stokes equation could be completely described by the dynamics

of a finite system of ODEs. By using a very ingenious nonlenear change of variables, Dr.

Minkyu Kwak, a recent Ph.D student of George Sell, solved this problem. His approach

was to use the nonlinear change of variables to imbed the Navier-Stokes equations into

a system of reaction diffusion equations. This imbedding, which is now being called the

Kwak Transformation by some experts, is chosen so that it preserves all the dynamics of

the Navier-Stokes equation. More importantly, the system of reaction diffusion equations

has only algebraic nonlinearities (i.e., no derivative terms), and consequently, it has an

inertial manifold. As a result, the dynamics of the associated inertial form then completely

describes the long-time dynamics of the original 2D Navier-Stokes equations.

The work of Kwak has already attracted wide spread interest. For example, his paper

was recently presented at an International Conference on Turbulence Modeling at Arizona

State University, and it was generally felt to be the most important new result presented

at this meeting. Kwak received his PhD in June, 1991.

VISITING SCIENTISTS

C. Foias, from Indiana University, was in residence for about one week. Two joint

papers with G. Sell (and others) were completed at that time. These results are reported

above.

M. Marion, from the Universit6 de Paris-Sud (Orsay), visited the University of Min-

nesota for the month of April, 1988. She and G. Sell began a project on the existence of

inertial manifolds for systems of reaction diffusion equations in space dimension 3. The ob-

jective of this project is to use the Principle of Spatial Averaging for systems of equations,

as opposed to a single equation, thereby extending the theory presented in Mallet-Paret

and Sell (1988). Thius work cointinued with return visits by Marion to Minnesota in

November, 1989 and April, 1991.

Genevieve Raugel from Ecole Polytechnique in Paris visited the University of Min-

nesota in July 1988. The purpose of this visit was to do some joint work with George

Sell on the existence of attractors for the 3D Navier-Stokes equations. A first step in this

project is to study the regularity of solutions of the 3-dimensional setting. The regularity

of solutions in 3D is a nontrivial issue, which has been an open problem since the publi-

cation of the first papers of Leray, over 50 years ago. Raugel and Sell are trying to use

methods of dynamical systems to address this problem.
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